185 research outputs found

    Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks

    Full text link
    We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is utilized in KK-cell uplink networks with time-invariant channel coefficients and base stations (BSs) having MM antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other BSs. Two OIM protocols are shown according to the number SS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown that KMKM DoFs are achievable under the OIN protocol with MM selected users per cell, if the total number NN of users in a cell scales at least as SNR(K1)M\text{SNR}^{(K-1)M}. Similarly, it turns out that the OIA scheme with SS(<M<M) selected users achieves KSKS DoFs, if NN scales faster than SNR(K1)S\text{SNR}^{(K-1)S}. These results indicate that there exists a trade-off between the achievable DoFs and the minimum required NN. By deriving the corresponding upper bound on the DoFs, it is shown that the OIN scheme is DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication

    Can One Achieve Multiuser Diversity in Uplink Multi-Cell Networks?

    Full text link
    We introduce a distributed opportunistic scheduling (DOS) strategy, based on two pre-determined thresholds, for uplink KK-cell networks with time-invariant channel coefficients. Each base station (BS) opportunistically selects a mobile station (MS) who has a large signal strength of the desired channel link among a set of MSs generating a sufficiently small interference to other BSs. Then, performance on the achievable throughput scaling law is analyzed. As our main result, it is shown that the achievable sum-rate scales as Klog(SNRlogN)K\log(\text{SNR}\log N) in a high signal-to-noise ratio (SNR) regime, if the total number of users in a cell, NN, scales faster than SNRK11ϵ\text{SNR}^{\frac{K-1}{1-\epsilon}} for a constant ϵ(0,1)\epsilon\in(0,1). This result indicates that the proposed scheme achieves the multiuser diversity gain as well as the degrees-of-freedom gain even under multi-cell environments. Simulation results show that the DOS provides a better sum-rate throughput over conventional schemes.Comment: 11 pages, 3 figures, 2 tables, to appear in IEEE Transactions on Communication

    Optimal Multiuser Diversity in Multi-Cell MIMO Uplink Networks: User Scaling Law and Beamforming Design

    Get PDF
    We introduce a distributed protocol to achieve multiuser diversity in a multicell multiple-input multiple-output (MIMO) uplink network, referred to as a MIMO interfering multiple-access channel (IMAC). Assuming both no information exchange among base stations (BS) and local channel state information at the transmitters for the MIMO IMAC, we propose a joint beamforming and user scheduling protocol, and then show that the proposed protocol can achieve the optimal multiuser diversity gain, i.e., KM log (SNR log N), as long as the number of mobile stations (MSs) in a cell, N, scales faster than SNRKM-L/1-epsilon for a small constant epsilon &gt; 0, where M, L, K, and SNR denote the number of receive antennas at each BS, the number of transmit antennas at each MS, the number of cells, and the signal-to-noise ratio, respectively. Our result indicates that multiuser diversity can be achieved in the presence of intra-cell and inter-cell interference even in a distributed fashion. As a result, vital information on how to design distributed algorithms in interference-limited cellular environments is provided

    A multicenter phase II study of everolimus in patients with progressive unresectable adenoid cystic carcinoma

    Get PDF
    BACKGROUND: The aim of this study was to examine the efficacy and safety of everolimus in patients with progressive unresectable adenoid cystic carcinoma (ACC). METHODS: Histologically confirmed ACC patients with documented disease progression within 12 months prior to the study entry were eligible. Everolimus was given at a dose of 10 mg daily until progression or occurrence of unacceptable toxicities. The primary endpoint was a 4-month progression-free survival (PFS). RESULTS: A total of 34 patients were enrolled. The 4-month PFS probability was 65.5% (95% one-sided confidence interval [CI], 47.7 to infinity). Median PFS duration was 11.2 months (95% CI, 3.6 to 15.8). Complete or partial response was not achieved. Twenty-seven (79.4%, 95% CI, 63.2 to 89.6) patients showed stable disease (SD). Tumor shrinkage within SD criteria was observed in 15 patients (44.1%) and SD lasting 6 months was observed in 13 patients (38.2%). Four patients had disease progression. Among the 18 patients with both pre- and post-treatment (at 8 weeks) FDG-PET scans available, 8 patients (44.4%) showed a partial metabolic response, defined as a ≥25% reduction in maximum standardized uptake values (SUVmax). The most common adverse events were stomatitis, anemia, asthenia, and leukopenia. No unexpected everolimus related toxicities were reported. CONCLUSIONS: Everolimus showed promising efficacy and good tolerability in progressive unresectable ACC. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT0115284

    Evaluation of changes in random blood glucose and body mass index during and after completion of chemotherapy in children with acute lymphoblastic leukemia

    Get PDF
    PurposeImproved survival of patients with childhood acute lymphoblastic leukemia (ALL) has drawn attention to the potential for late consequences of previous treatments among survivors, including metabolic syndrome. In this study, we evaluated changes in 3 parameters, namely, random blood glucose, body mass index (BMI), and Z score for BMI (Z-BMI), in children with ALL during chemotherapy and after completion of treatment.MethodsPatients newly diagnosed with ALL from January, 2005 to December, 2008 at Saint Mary's Hospital, The Catholic University of Korea, who completed treatment with chemotherapy only were included (n=107). Random glucose, BMI, and Z-BMI were recorded at 5 intervals: at diagnosis, before maintenance treatment, at completion of maintenance treatment, and 6 and 12 months after completion of maintenance treatment. Similar analyses were conducted on 2 subcohorts based on ALL risk groups.ResultsFor random glucose, a paired comparison showed significantly lower levels at 12 months post-treatment compared to those at initial diagnosis (P<0.001) and before maintenance (P<0.001). The Z-BMI score was significantly higher before maintenance than at diagnosis (P<0.001), but decreased significantly at the end of treatment (P<0.001) and remained low at 6 months (P<0.001) and 12 months (P<0.001) post-treatment. Similar results were obtained upon analysis of risk group-based subcohorts.ConclusionFor a cohort of ALL patients treated without allogeneic transplantation or cranial irradiation, decrease in random glucose and Z-BMI after completion of chemotherapy does not indicate future glucose intolerance or obesity

    Taurine chloramine differentially inhibits matrix metalloproteinase 1 and 13 synthesis in interleukin-1β stimulated fibroblast-like synoviocytes

    Get PDF
    It has been suggested that taurine chloramine (TauCl) plays an important role in the downregulation of proinflammatory mediators. However, little is known about its effect on the expression of matrix metalloproteinases (MMPs). In this study, we investigated the effects of TauCl on synovial expression of MMPs. The effects of TauCl on MMP expression in IL-1β stimulated fibroblast-like synoviocytes (FLSs) were studied using the following techniques. Real-time PCR and semi-quantitative PCR were employed to analyze the mRNA expression of MMPs. ELISA was used to determine protein levels of MMPs. Western blot analyses were performed to analyze the mitogen-activated protein kinase and inhibitor of nuclear factor-κB (IκB) kinase signalling pathways. Finally, electrophoretic mobility shift assay and immunohistochemistry were used to assess localization of transcription factors. IL-1β increased the transcriptional and translational levels of MMP-1 and MMP-13 in rheumatoid arthritis FLSs, whereas the levels of MMP-2 and MMP-9 were unaffected. TauCl at a concentration of 400 to 600 μmol/l greatly inhibited the transcriptional and translational expression of MMP-13, but the expression of MMP-1 was significantly inhibited at 800 μmol/l. At a concentration of 600 μmol/l, TauCl did not significantly inhibit phosphorylation of mitogen-activated protein kinase or IκB degradation in IL-1β stimulated rheumatoid arthritis FLSs. The degradation of IκB was significantly inhibited at a TauCl concentration of 800 μmol/l. The inhibitory effect of TauCl on IκB degradation was confirmed by electrophoretic mobility shift assay and immunochemical staining for localization of nuclear factor-κB. TauCl differentially inhibits the expression of MMP-1 and MMP-13, and inhibits expression of MMP-1 primarily through the inhibition of IκB degradation, whereas it inhibits expression of MMP-13 through signalling pathways other than the IκB pathway
    corecore